Lecture 9 Aromatics

February 16, 2016

First Midterm Exam

- When: Wednesday, 2/17
- When: 7-9 PM (please do not be late)
- Where: WEL 3.502...enter from Inner Campus Drive
- What: Covers material through Thursday's lecture
- Remember: Homework problems!!
- Practice: Old exams will be posted on the web site
- Review Sessions: Mon Pharm 2.110, Tue Painter 4.42.
- Please...bring pencils, an eraser and a calculator only andDo a good job!!!

Chemistry 328N

3 x cyclohexene

120 kJ/mol

"expected" heat of hydrogenation of benzene is 3 x heat of hydrogenation of cyclohexene

360 kJ/mol

The answer comes from MO Theory

1. But I hate MO stuffit is confusing......⊗

2. How do you even know how many MOs there are??

3. How do you know the relative energies of these MO's???

For Cyclic Structures Frost Circles...a Great Trick

- Inscribe a polygon of the same number of sides as the ring to be examined such that <u>one of the</u> vertices is at the bottom of the ring
- The relative energies of the MOs in the ring are given by where the vertices touch the circle
- The MOs
 - below the horizontal line through the center of the ring are bonding MOs
 - on the horizontal line are nonbonding MOs
 - above the horizontal line are antibonding MOs

Frost circles for cyclic, fully conjugated 4-,5- and 6-membered rings

π-MOs of Cyclobutadiene (square planar)

4 π electrons; bonding orbital is filled; other 2 π electrons singly occupy two nonbonding orbitals

Structure of Cyclobutadiene

structure of a stabilized derivative is characterized by alternating short bonds and long bonds

π -MOs of Benzene

π-MOs of Cyclooctatetraene (square planar)

nonbonding orbitals are each half-filled Chemistry 328N

Structure of Cyclooctatetraene

cyclooctatetraene is not planar

has alternating long (146 pm) and short (133 pm) bonds

Chemistry 328N

Heats of Hydrogenation

to give cyclohexane (kJ/mol)

heat of hydrogenation of benzene is 152 kJ/mol less than 3 times heat of hydrogenation of cyclohexene

Heats of Hydrogenation

to give cyclooctane (kJ/mol)

heat of hydrogenation of cyclooctatetraene is more than 4 times the heat of hydrogenation of cyclooctene....no special stability here! *Chemistry 328N*

Requirements for Aromaticity

Cyclic conjugation is necessary, but not sufficient

There is still something wrong!!!

There has to be some factor in addition to cyclic conjugation that determines whether a molecule is aromatic or not

Hückel's Rule

The additional factor that influences aromaticity is the <u>number</u> of π electrons

Hückel's Ruleb

Among planar, monocyclic, completely conjugated polyenes, only those with $4n + 2\pi$ electrons possess special stability (are aromatic) Magic Numbers 4*n*+2 2 $\left(\right)$ benzene! 6 1 10 2 3 1418 4 Chemistry 328N

Hückel's Rule for Aromaticity

- **To be Aromatic ...a compound must :**
- 1. be Cyclic
- 2. have one P orbital on each atom in the ring
- 3. be planar or nearly so to give orbital overlap
- have a closed loop of 4n+2 pi electrons in the cyclic arrangement of p orbitals

Hückel's Rule

Actually and inadvertently defines a condition for cyclic molecules in which the bonding molecular orbitals are filled and there are no electrons in non-bonding or antibonding orbitals roughly analogous to the "rare gas" condition for atomic orbitals...

π -MOs of Benzene

all π antibonding orbitals are empty

Chemistry 328N

π -MOs of Cyclooctatetraene

π -Electron Requirement for Aromaticity

Only Completely Conjugated Polyenes can be Aromatic

6 π electrons; completely conjugated

aromatic

6 π electrons;
 not completely
 conjugated

Cyclopentadiene

Let's fill these for each case, radical, anion and cation

π e's Radical ____ Cation ____ Anion ____

Cyclopentadienide Anion

6 π electrons delocalized over 5 carbons negative charge dispersed over 5 carbons stabilized anion

Acidity of Cyclopentadiene

H H $pK_a = 16$ $K_a = 10^{-16}$

Н

Cyclopentadiene is unusually acidic for a hydrocarbon. Increased acidity is due to stability of cyclopentadienide anion.

Н

Cyclopentadienide Anion

Let's Move Electrons

Let's fill these for each case, radical, anion and cation

πe's Radical ____ Cation ____ Anion ____

Chemistry 328N

Compare Acidities of Cyclopentadiene and Cycloheptatriene

 $pK_a = 16$ $K_a = 10^{-16}$

Chemistry 328N

Cyclopropenyl Cation

n = 0 $4n + 2 = 2 \pi \text{ electrons } !!$

n = 0 (4n+2 = 2) fills a bonding MO

Discovery of Cyclopropylium Cation

Ron Breslow 1931 -

While still in his twenties, Breslow made two groundbreaking contributions to mechanistic organic chemistry. His synthesis of a cyclopropenyl cation generalized the concept of aromaticity to cyclic systems with only 2 π -electrons. This work was bolstered by showing that cyclopropenyl anions and cyclopentadienyl cations, each with 4n π electrons in a cyclic array, are antiaromatic (a term Breslow coined).

Cyclooctatetraene Dianion

$4n+2 = 10 \pi$ electrons

Heterocyclic Aromatic Compounds

Heterocyclic Aromatic Compounds

Heterocyclic Aromatic Compounds and Hückel's Rule

6 π electrons in ring
lone pair on nitrogen is in an *sp*² hybridized orbital;
not part of π system of ring

Hückel and Pyridine

This orbital is perpendicular • to the six 2p orbitals of the pi system.

This electron pair is not a part of the 4n + 2 pi electrons.

lone pair on nitrogen must be part of ring π system if ring is to have 6 π electrons lone pair <u>must be in</u> a *p* orbital in order to overlap with ring π system

Hückel and Pyrrole

two lone pairs on oxygen one pair is in a *p* orbital and is part of ring π system; other is in an *sp*² hybridized orbital and is not part of ring π system

Huckel and Furan

